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Abstract

This paper discussed nonlinear active noise control (ANC). Some adaptive nonlinear noise control approaches using

recurrent fuzzy neural networks (RFNNs) were derived. The proposed RFNNs were feed-forward fuzzy neural networks

(NNs) with different local feedback connections that are used to construct dynamic fuzzy rules. Different recurrent

connection strategies, diagonal recurrent and full connected recurrent ones, were considered. In addition, different fuzzy

operation strategies, product (multiply) inference and ‘‘summation’’ (addition) inference, were proposed. Because RFNN-

based ANC systems can capture the dynamic behavior of a system through the feedback links, the exact lag of the input

variables need not be known in advance. Online dynamic back-propagation learning algorithms based on the error

gradient descent method were proposed, and the local convergence of a closed-loop system was proven using the discrete

Lyapunov function. A nonlinear simulation example showed that an adaptive ANC system based on an RFNN with

summation inference is superior to a system based on other fuzzy NNs.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

Active noise control (ANC) has received much attention in recent years. In an ANC system, a secondary
source is introduced to generate antinoise of equal amplitude but of opposite phase with reference to the
primary noise. ANC techniques can be utilized to extract a signal buried in noise or to cancel unwanted noise.
The filter-x least mean square (FXLMS) algorithm is a popular adaptive filtering algorithm using a finite
impulse response (FIR) filters [1,2]. Its popularity is because of its simplicity, robustness, and relatively low
computational load. With the development of digital signal processing (DSP) hardware, adaptive algorithms
may be implemented in real-time practical systems [3]. Linear ANC systems have been successfully used to
cancel both broadband noise and narrowband noise in air conditioning duct systems, handsets, and others
[1–3]. However, in a practical ANC system, the secondary path and primary path of the ANC system may
exhibit nonlinear behaviors. Thus, the development of nonlinear filters is necessary. Adaptive Volterra filters
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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have been introduced for active control of nonlinear noise processes [4]. The drawback is that the filter size
increases exponentially when the inputs of the filter increases. Neural networks (NNs) have been introduced to
control nonlinear noise, and multilayer perceptron networks are used to control nonlinear plants [5–8]. The
multilayer perceptron network is a global approximate NN, and the major problem with an NN-based ANC is
its relatively slow learning (or convergence) process. A fast NN learning algorithm has been proposed for
ANC systems [8], but it is too complex to develop in practice. A local approximate NN, known as a radial
basis function (RBF) network [9], can be introduced to improve convergence performance. Recently, a fuzzy
modeling and controlling technique [10,11] has been used in a nonlinear filter. A fuzzy NN is a local
approximate model, and the adaptive process can be accelerated. Gaussian functions are often chosen for local
approximate models. The parameters of the network are separated into linear and nonlinear parameter sets
[12]. Given the input data set, the nonlinear parameters, the mean and variance of the Gaussian functions can
be estimated using a clustering algorithm. Only the linear parameters are updated online [11]. Both an acoustic
model of the primary path and an inverse model of the secondary path have been identified using the
Takagi–Sugeno (TS) model [10], and results have been obtained experimentally for a multichannel ANC
system. Because an open-loop strategy is utilized in an ANC system, the performance of such a system will be
degraded by disturbances and model mismatches. A feed-forward NN [5–11] is a static mapping. With tapped
delays, a feed-forward NN can be used to represent a dynamic mapping, but a large number of neurons are
required for representing dynamic responses in the time domain [13]. On the other hand, recurrent NNs
(RNNs) may be used to deal with time-varying input or output through their natural temporal operation
itself. Thus, an RNN is a dynamic mapping and is better suited for a dynamic system than a feed-forward NN
[13,14]. A recurrent adaptive fuzzy filter has been proposed to resolve speech processing problems involving
noise [15]. Good performances have been obtained, and the exact order of the inputs need not be known. In
Ref. [15], because the secondary path is not considered, the noise-canceling process is a system identification
problem and not a control problem. This paper focuses on the ANC problem involved in the nonlinear
response of an unknown primary acoustic path. An example of a nonlinear response of the primary path is the
nonlinear distortion that occurs when the primary noise propagating in a duct has a high sound pressure [4].
This paper is organized as follows. Section 2 describes a nonlinear ANC system and a general adaptive control
algorithm. Section 3 describes the architecture of several recurrent fuzzy NNs (RFNNs) and their functions.
Section 4 describes adaptive control algorithms using different RFNNs. In Section 5, the convergence of closed-
loop systems is proven using the discrete Lyapunov function. In Section 6, proposed nonlinear ANC systems
with different RFNNs are compared using computer simulations. The conclusions are given in Section 7.
2. System descriptions

An ANC system with a nonlinear primary noise path is shown in Fig. 1. The secondary path is modeled with
an FIR filter. The ANC system can be described using the following equation [11]:

eðkÞ ¼ dðkÞ þ yðkÞ ¼ gðX ðkÞÞ þ
Xm

j¼0

hðjÞuðk � jÞ, (1)
x(k) d(k)  + e(k) 

+

y(k) 

u(k) 

Nonlinear 
Primary path  

Secondary pathNonlinear
Controller

Fig. 1. Block diagram of a nonlinear control system.
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where X ðkÞ ¼ ½xðkÞxðk � 1Þ . . . xðk � nÞ�T is the reference signal vector, u(k) is the output of the nonlinear
controller, and h(j) (j ¼ 0; 1 . . . ;m) is the FIR filter coefficient of the secondary path model. d is the
disturbance signal received at the error microphone, and g(.) is a smoothing nonlinear function. The output of
the feed-forward nonlinear controller can be expressed as

uðkÞ ¼ f ðX ðkÞ; W Þ, (2)

where f(.) is a smoothing nonlinear function and W is a parameter vector. W is the weights vector when an NN
is used as the nonlinear controller. The performance index can be described as

JðkÞ ¼
1

2
e2ðkÞ ¼

1

2
½yðkÞ þ dðkÞ�2. (3)

The unknown parameters can be adjusted according to the gradient descent method,

W ðk þ 1Þ ¼W ðkÞ � m
qJðkÞ

qW ðkÞ
¼W ðkÞ � meðkÞ

qyðkÞ

qW ðkÞ
, (4)

where m is the learning rate. Applying the chain rule to Eq. (4),

qyðkÞ

qW ðkÞ
¼
Xm

j¼0

qyðkÞ

quðk � jÞ

quðk � jÞ

qW ðkÞ
¼
Xm

j¼0

hðjÞ
quðk � jÞ

qW ðkÞ
. (5)

If the parameters W(k) are made to adapt slowly enough with time, the gradients of u in Eq. (5) can be
approximately written as

quðk � jÞ

qW ðkÞ
�

quðk � jÞ

qW ðk � jÞ
¼

qf ðX ;W Þ

qW

����
X¼X ðk�jÞ;W¼W ðk�jÞ

. (6)

The parameters of the nonlinear controller can be adjusted online using the update rule (Eq. (4)), with the
gradients calculated in Eqs. (5) and (6).

3. Structures of RFNNs

A general feed-forward nonlinear controller was proposed in Section 2. The nonlinear controller f(X(k),W)
can be approximated using an NN because of its universal approximation ability. The vector W represents the
weights of the NN. Several NNs may be used, for example, multilayer perceptrons (MLPs), RBF networks,
and FNNs. In this paper, RFNNs are used as nonlinear filters.

A diagonal RFNN (DRFNN) structure is shown in Fig. 2. The system has five layers as proposed in Ref.
[13]. A model with two inputs and a single output is considered here for convenience. The nodes in Layer 1 are
input nodes that directly transmit input signals to the next layer. Layer 5 is the output layer.

The nodes in Layer 2 are ‘‘term nodes’’ (G), and they act as membership functions expressing the
input fuzzy linguistic variables. A Gaussian function is used for the membership function, in which the
mean value, m, and the variance, s, can be adjusted during the learning process. There are two advantages
V

G 

G 

G 

G 

G 

R

R

R

N

N

N

x(k-1)

u(k)
�

Fig. 2. Structure of five-layered DRFNN.
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in employing a Gaussian membership function. The first is the continuity of the Gaussian function, which
is usually required for most conventional gradient-based optimization techniques. The other advantage is
that a multidimensional Gaussian membership function can be decomposed into multiple one-dimensional
Gaussian membership functions for the corresponding number of input variables [12]. The two fuzzy sets
of the first and the second input variables consist of n1and n2 linguistic terms, respectively. Each node in
Layer 3 is called a ‘‘rule node’’ (R) and represents a single fuzzy rule. A diagonal feedback connection is
introduced to give the feed-forward fuzzy NN a temporal processing capability. In total, there are n1� n2
nodes in Layer 3 forming a fuzzy rule base for two linguistic input variables. The nodes in Layer 4 (N) perform
the normalization of firing strengths from Layer 3, and the input links are fully connected. The normalization
of firing strengths is helpful in improving the convergence performance of the linear adaptive process.
The number of nodes in this layer is equal to that of the nodes in Layer 3. In the following descriptions, the
symbol v

ðkÞ
i denotes the ith input of a node in the kth layer, and the symbol aðkÞ denotes the output of a node in

the kth layer. To provide a clear understanding of an RFNN, the functions of Layer 1 to Layer 5 are defined
as follows:

Layer 1: The nodes in this layer only transmit input values to the nodes of the next layer directly,

a
ð1Þ
i ðkÞ ¼ v

ð1Þ
i ðkÞ. (7)

Layer 2: The nodes in this layer represent Gaussian membership functions. The functions of the nodes are
defined as

a
ð2Þ
j ðkÞ ¼ exp �

ðv
ð2Þ
i ðkÞ �mijÞ

2

s2ij

( )
, (8)

where mij and sij are the mean and the width of the Gaussian membership function of the jth term of the ith
input variable, x(i), respectively.

Layer 3: The nodes in this layer are rule nodes, and a diagonal recurrent architecture is selected. The rule
nodes perform a fuzzy AND operation (or product inference) to calculate the firing strength,

a
ð3Þ
i ðkÞ ¼

Y
j

v
ð3Þ
j ðkÞV ia

ð3Þ
i ðk � 1Þ, (9)

where Vi and ai(k�1) are the recurrent link weight and the output in the last steps of the ith node in Layer 3,
respectively.

Layer 4: Nodes in Layer 4 perform the normalization of firing strengths from Layer 3,

a
ð4Þ
i ðkÞ ¼

v
ð4Þ
i ðkÞP
jv
ð4Þ
j ðkÞ

. (10)

Layer 5: This layer is the output layer. The link weights in this layer represent the singleton constituents
(Wi) of the output variable. The output node integrates all the normalized firing strengths from Layer 4 with
the corresponding singleton constituents and acts as a defuzzifier,

uðkÞ ¼ að5ÞðkÞ ¼
X

i

v
ð5Þ
i ðkÞW i. (11)

Remark 1. The architecture of a DRFNN as shown in Fig. 2 possesses the advantage of a simple structure
with dynamic characteristics. The purpose of the recurrent is to counter the past firing strength of its
corresponding rule in Layer 3. Because the feedback terms contain the firing history of the rules, the recurrent
fuzzy network has dynamic characteristics [13]. The fuzzy NN is a local approximate model, and the most
firing strengths of the rules in Layer 3 are zeros (or near zeros) for arbitrary input. Thus, once an output of a
node in Layer 3 is zero, it will be zero forever for the DRFNN. Therefore, a DRFNN is difficult to use in
nonlinear ANC systems.

Several techniques can be used to improve the performance of the DRFNN. First, as in Ref. [15], a global
membership function, f ðxÞ ¼ 1=ð1þ e�xÞ, can be used with the feedback term node. The structure of the
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improved DRFNN is shown in Fig. 3. For simplicity, only the rule layer is illustrated, and the other layers are
the same as in Fig. 2. The firing strength of a rule term in Layer 3 can take a nonzero value, even if it is zero in
the previous iteration. The function of Layer 3 can be defined as follows:

a
ð3Þ
i ðkÞ ¼ SiðkÞf ðnetiðkÞÞ,

SiðkÞ ¼
Y

j

v
ð3Þ
j ðkÞ; netiðkÞ ¼ Via

ð3Þ
i ðk � 1Þ. ð9aÞ

The fully connected recurrent NN has interlinked weights, and it can capture more complex dynamic
systems. A fully connected RFNN is shown in Fig. 4. As in Fig. 3, only the rule layer is illustrated. S and z�1

denote summation and one-sample delay, respectively. The function of Layer 3 can be defined as follows:

a
ð3Þ
i ðkÞ ¼ SiðkÞf ðnetiðkÞÞ,

SiðkÞ ¼
Y

j

v
ð3Þ
j ðkÞ;netiðkÞ ¼

X
j

V ija
ð3Þ
j ðk � 1Þ. ð9bÞ

Three feedback structures of the rule layer are shown in Figs. 2–4. We can also consider other fuzzy
operations for calculating the firing strength. For example, one can replace the ‘‘product’’ (multiply) operation
with the ‘‘summation’’ (addition) operation and obtain two new RFNNs with the operation ‘‘summation
(addition)’’ (denoted ‘‘RFNNA’’). In contrast, the RFNNs with the product operation are simply denoted by
RFNNM. For the diagonal RFNNA (DRFNNA), the function of Layer 3 can be defined as in Fig. 4.

a
ð3Þ
i ðkÞ ¼ SiðkÞ þ f ðnetiðkÞÞ,

SiðkÞ ¼
Y

j

v
ð3Þ
j ðkÞ; netiðkÞ ¼ Via

ð3Þ
i ðk � 1Þ. ð9cÞ

For the fully connected RFNNA, the function of Layer 3 can be defined as follows:

a
ð3Þ
i ðkÞ ¼ SiðkÞ þ f ðnetiðkÞÞ

SiðkÞ ¼
Y

j

v
ð3Þ
j ðkÞ;netiðkÞ ¼

X
j

V ija
ð3Þ
j ðk � 1Þ. ð9dÞ
R RR

Z-1

f (x)

Z-1

f (x)

Z-1

f (x)

Vi· · ·
Rule
Layer 3

Fig. 3. Rule layer of the improved DRFNN.

Vij · · ·

R RR

Σ & Z-1 

f (x) f (x) f (x)

Rule
Layer 3

Σ & Z-1 Σ & Z-1 

Fig. 4. Fully connected RFNN.
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In the next section, we shall discuss the learning algorithm of RFNNs and use these NNs to control a
nonlinear ANC system.

4. The adaptive control approach using RFNNS

Generally, the learning algorithm of an RFNN consists of two major components:
(1)
 Input/output space partitioning and construction of fuzzy rules.

(2)
 Identification of parameters.
In this paper, the input space is partitioned using a priori knowledge. The gradient descent method is used to
adjust the parameters of an RFNN. Fig. 5 shows the block diagram of an RFNN-based ANC system. The
RFNN controller is selected to replace the nonlinear controller (compared with Fig. 1). The RFNN controller
is a nonlinear tap-delay filter, and the input of the RFNN is the reference x(k), and its delays are x(k�1),
x(k�2),y,x(k�n).

It is presumed that the input space is partitioned by a priori knowledge. Only the singleton
constituents of the output variable and the recurrent weights are adaptively adjusted when the ANC system
is running. The rule of adaptive learning can be obtained using the gradient descent technique according to
Eqs. (3)–(6). The gradients with respect to the weight vectors, W and V, can be computed using the chain rule
as follows:

qJðkÞ

qW
¼ eðkÞ

qyðkÞ

qW
¼ eðkÞ

Xm

j¼0

hðjÞ
quðk � jÞ

qW
, (12)

qJðkÞ

qV
¼ eðkÞ

qyðkÞ

qV
¼ eðkÞ

Xm

j¼0

hðjÞ
quðk � jÞ

qV
, (13)

quðkÞ

qW i

¼ v
ð5Þ
i ðkÞ ¼ a

ð4Þ
i ðkÞ. (14)

For a DRFNN, the gradient can be computed as

quðkÞ

qV i

¼
X
j¼1

W j

qv
ð5Þ
j ðkÞ

qVi

¼ ½W i � uðkÞ�=
X

j

a
ð3Þ
j ðkÞ

( )
qa
ð3Þ
i ðkÞ

qV i

. (15a)

For an RFNN, the gradient can be computed as

quðkÞ

qVij

¼ ½W i � uðkÞ�=
X

l

a
ð3Þ
l ðkÞ

( )
qa
ð3Þ
i ðkÞ

qVij

. (15b)
 +

+

y(k)

u(k)

x(k) d(k) e(k)Nonlinear 
Primary path

Secondary pathRFNN 
Controller 

Fig. 5. Block diagram of an RFNN-based ANC system.
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Because the diagonal recurrent NN whose firing strength is calculated using Eq. (9) cannot be used with the
nonlinear ANC system, the gradient with respect to the recurrent weight is not given in this paper. For the
DRFNNM, a diagonal recurrent NN for which the firing strength is calculated using Eq. (9a), the gradient
with respect to recurrent link weight can be calculated as follows:

qa
ð3Þ
i ðkÞ

qVi

¼ SiðkÞf
0
ðnetiðkÞÞ a

ð3Þ
i ðk � 1Þ þ V i

qa
ð3Þ
i ðk � 1Þ

qVi

( )
,

SiðkÞ ¼
Y

j

v
ð3Þ
j ðkÞ; netiðkÞ ¼ V ia

ð3Þ
i ðk � 1Þ. ð16aÞ

From Eq. (9b), the gradient with respect to the recurrent link weight of the RFNNM is found as

qa
ð3Þ
i ðkÞ

qV ij

¼ SiðkÞf
0
ðnetiðkÞÞ a

ð3Þ
j ðk � 1Þ þ Vii

qa
ð3Þ
i ðk � 1Þ

qV ij

( )
,

SiðkÞ ¼
Y

j

v
ð3Þ
j ðkÞ; netiðkÞ ¼

X
j

V ija
ð3Þ
j ðk � 1Þ. ð16bÞ

From Eq. (9c), the gradient with respect to the recurrent link weight of the DRFNNA is

qa
ð3Þ
i ðkÞ

qV i

¼ f 0ðnetiðkÞÞ a
ð3Þ
i ðk � 1Þ þ V i

qa
ð3Þ
i ðk � 1Þ

qV i

( )
,

netiðkÞ ¼ V ia
ð3Þ
i ðk � 1Þ. ð16cÞ

Again, from Eq. (9d), the gradient with respect to the recurrent link weight of the RFNNA is found as
follows:

qa
ð3Þ
i ðkÞ

qV ij

¼ f 0ðnetiðkÞÞ a
ð3Þ
j ðk � 1Þ þ V ii

qa
ð3Þ
i ðk � 1Þ

qV ij

( )
,

netiðkÞ ¼
X

j

V ija
ð3Þ
j ðk � 1Þ. ð16dÞ

From Eq. (16a) to Eq. (16d), one can find that the gradient with respect to the recurrent link weight is a
dynamic equation. Using symbols similar to those in Ref. [14], the gradient for DRFNNM in Eqs. (15a) and
(16a) is given by

quðkÞ

qVi

¼ BiðkÞPiðkÞ, (15a0)

where BiðkÞ ¼ ½W i � uðkÞ�=
P

ja
ð3Þ
j ðkÞ and PiðkÞ ¼ qa

ð3Þ
i ðkÞ=qV i. PiðkÞ satisfies

PiðkÞ ¼ SiðkÞf
0
ðnetiðkÞÞ a

ð3Þ
i ðk � 1Þ þ V iPiðk � 1Þ

n o
;Pið0Þ ¼ 0. (16a0)

Eqs. (15a0) and (16a0), are dynamic recursive equations for the gradient, and it can be solved with given
initial conditions recursively.

For the other RFNNs, the procedures of deriving the dynamic recursive equations are similar to the above
derivation, and they are not given in this paper.

5. The convergence of the ANC system

An RFNN-based ANC system uses an error gradient descent algorithm to adjust the weight vector of the
NN. As in Ref. [14], a discrete-type Lyapunov function can be given by

V ðkÞ ¼
1

2
e2ðkÞ. (17)
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Because of the training process, the change in the Lyapunov function can be obtained using

DV ðkÞ ¼ V ðk þ 1Þ � V ðkÞ ¼
1

2
e2ðk þ 1Þ � e2ðkÞ
� �

. (18)

The error difference resulting from the learning can be represented by

eðk þ 1Þ ¼ eðkÞ þ DeðkÞ ¼ eðkÞ þ
qeðkÞ

qW ðkÞ

� �T
DW ðkÞ. (19)

According to the update rule of the weights, we can obtain

DW ðkÞ ¼ �meðkÞ
Xm

j¼0

hðjÞ
quðk � jÞ

qW ðkÞ
¼ �meðkÞHAðkÞ, (20)

where H ¼ ½hð0Þhð1Þ . . . hðmÞ� is the vector made up of the pulse responses of the secondary path and AðkÞ ¼

½@uðkÞ=@W@uðk � 1Þ=@W . . . @uðk �mÞ=@W � is the gradient matrix with respect to the general weight vector. A
general convergence theorem can be presented as follows.

Theorem 1. Let m be the learning rate for the general weights of the DRFNN or the RFNN. We define g0 ¼ jjHjj

and gmax ¼ maxkjjAðkÞjj, where �k k is the usual Euclidean norm of a matrix or a vector. If the learning rate, m, is

chosen as 0omo2/(g0gmax)
2, then the local convergence of a closed-loop control system based on NNs is

guaranteed.

Proof. Define QðkÞ ¼ HAðkÞ; according to Eqs. (17)–(20), DV(k) can be represented as

DV ðkÞ ¼ DeðkÞ½2eðkÞ þ DeðkÞ�=2

¼ �
1

2

qeðkÞ

qW ðkÞ

� �T
meðkÞHAðkÞ 2eðkÞ �

@eðkÞ

@W ðkÞ

� �T
meðkÞHAðkÞ

( )

¼ �
1

2
meðkÞjjQðkÞjj2f2eðkÞ � eðkÞjjQðkÞjj2g ¼ �

1

2
me2ðkÞ QðkÞ

�� ��2 2� m QðkÞ
�� ��2n o

¼ �
1

2
le2ðkÞ.

Because jjQðkÞjjpjjHjjjjAðkÞjjpg0gmax, if the learning rate, m, is chosen as 0omo2/(g0gmax)
2, then

0omo2=jjQðkÞjj2, which implies that l ¼ mjjQðkÞjj2f2� mjjQðkÞjj2g40 and DV ðkÞo0. Therefore, the control
system is locally convergent.

The general convergence theorem can be used to find the specific convergence criterion for each type of
weight of different RFNNs. &

Theorem 2. Let mW and mV be the learning rates for the feed-forward weight vector and the recurrent weight

vector of the DRFNNM, respectively. The dynamic back-propagation algorithm converges if the recurrent

weights satisfy jV ijo1 and the learning rates are chosen as

0omWo2=½ðmþ 1Þg2
0�, (21a)

0omVoS2
min

�
2nrðmþ 1Þg2

0W
2
max

� �
; (21b)

where nr is the number of rule nodes in Layer 3, g0 ¼ jjHjj, and Wmax ¼ maxkjjW ðkÞjj. W(k) is the link weight

vector between Layers 4 and 5, Smin ¼ mink[Sum(k)], and SumðkÞ ¼
P

jv
ð4Þ
j ðkÞ

��� ���.
Proof. (a) From Eq. (14),

AðkÞ ¼ ½A4ðkÞA4ðk � 1Þ . . .A4ðk �mÞ�, (22)
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where A4ðkÞ ¼ ½a
ð4Þ
1 ðkÞa

ð4Þ
2 ðkÞ . . . a

ð4Þ
nr
ðkÞ�T is the output vector of Layer 4. Because a

ð4Þ
i ðkÞX0 and

P
ia
ð4Þ
i ðkÞ ¼ 1,

jjA4ðkÞjj
2 ¼

P
i½a
ð4Þ
i ðkÞ�

2p1 follows. From this we can obtain

jjAðkÞjjpsqrt
Xm

j¼0

A4ðk � jÞ
�� ��2 !

p
ffiffiffiffiffiffiffiffiffiffiffiffi
mþ 1
p

. (23)

Hence, from Theorem 1 and Eq. (23), Eq. (21a) follows.
(b) From Eq. (16a0),

PiðkÞ ¼ SiðkÞf
0
ðkÞfa

ð3Þ
i ðk � 1Þ þ V iPiðk � 1Þg,

where f 0ðkÞ ¼ f 0ðnetiðkÞÞ. From Eqs. (9a) and (8), we obtain jSiðkÞjp1 and ja
ð3Þ
i ðkÞj ¼ jSiðkÞjjf ðnetiðkÞÞjp1.

Because 0of 0ðnetiðkÞÞo0:5 and jV ijo1, the above equation can be estimated as follows:

jPiðkÞjpjSiðkÞj f 0ðkÞ
�� ��fjað3Þi ðk � 1Þj þ jVijjPiðk � 1Þjgp0:5þ 0:5jPiðk � 1Þj. (24)

Using Eq. (24) recurrently and consider the fact that Pið0Þ ¼ 0, it follows

jPiðkÞjp0:5þ 0:52 þ � � � þ 0:5k�1 þ 0:5kjPið0Þj ¼
Xk�1
t¼1

0:5tp
X1
t¼1

0:5t ¼ 1, (25)

denote AðkÞ ¼ ½AI ðkÞAI ðk � 1Þ . . .AI ðk �mÞ�, AI ðkÞ ¼ ½A1ðkÞA2ðkÞ � � �Anr
ðkÞ�T, and AiðkÞ ¼ quðkÞ=qVi. From

Eq. (15a0), we obtain

jAiðkÞj ¼ jBiðkÞjjPiðkÞjpj½W i � uðkÞ�j=
X

j
a
ð3Þ
j ðkÞ

��� ���pfjW ij þ juðkÞjg=Smin. (26)

From Eqs. (10) and (11) and the condition that jW ipWmax, we obtain

juðkÞjp
X

i

jv
ð5Þ
i jW ij jpWmax

X
i

jv
ð5Þ
i j ¼Wmax

X
i

v
ð5Þ
i ¼Wmax

X
i

v
ð4Þ
i =
X

j

v
ð4Þ
j ¼Wmax. (27)

Thus jAiðkÞjpfjW ij þ juðkÞjg=Sminp2Wmax=Smin and

jAI ðkÞjp2
ffiffiffiffi
nr

p
Wmax=Smin. (28)

Therefore

jjAðkÞjjpsqrt
Xm

j¼0

jjAI ðk � jÞjj2

 !
p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nrðmþ 1Þ

p
Wmax=Smin. (29)

Hence, from Theorem 1 and Eq. (29), Eq. (21b) follows.

Remark 2. In Theorem 2, only the convergence of the DRFNN with the product (multiply) inference
(DRFNNM)-based nonlinear ANC system is considered. The convergence of other RFNN-based nonlinear
ANC systems can be obtained by following the same steps. For the fully connected RFNN shown in Fig. 4,
the absolute value of the diagonal elements of the recurrent weight matrix must be selected as jViijo1 to
ensure the convergence of an adaptive nonlinear ANC system.

6. Simulation results

Some illustrative results are presented to compare the performances of the different RFNN-based ANC
systems. A personal computer with a Pentium 1.8GHz processor and 256MB of DRAM is used to implement
the simulations. The sampling frequency used for this simulation is 1000Hz. The disturbance signal chosen is a
100Hz pure tone signal with additional Gaussian white noise signal. There is only one input node and one
output node in all the RFNNs used. Given the input data set, the mean and variance of the Gaussian functions
can be estimated using a clustering algorithm. Because only one input node is selected in the simulation, the
input space is uniformly partitioned to eight fuzzy sets, and the means and widths of the Gaussian membership
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functions are selected as [11]:

m ¼ ½�0:65;�5=8;�3=8;�1=8; 1=8; 3=8; 5=8; 0:65�,

s ¼ ½�20; 0:14; 0:14; 0:14; 0:14; 0:14; 0:14; 20�.

Only the weight vectors W and V are adjusted online, and the means and widths of the Gaussian
membership functions remain fixed when the ANC system is running. In the simulation, only the nonlinearity
in the primary path is considered.

Case 1: The acoustic model is selected as in Ref. [4]. There is one sample delay in the secondary path, and it
has a root outside the unit circle. The secondary path simulated is a nonminimum phase system.

The primary acoustic path is selected as

dðkÞ ¼ xðk � 3Þ � 0:3xðk � 4Þ þ 0:2xðk � 5Þ þ 0:8x2ðk � 4Þ.

The secondary acoustic path from the secondary source to the error microphone is

yðkÞ ¼ uðk � 1Þ þ 1:5uðk � 2Þ � uðk � 3Þ.

Simulations are carried out for the RFNNs, whose firing strengths are calculated using ‘‘multiply’’. Both
diagonal recurrent and fully recurrent NNs are selected as single-input and single-output networks. The
variance of the Gaussian white noise signal is 0.04.

Fig. 6 shows the mean square error (MSE) in the error microphone versus the number of iterations. The
results of the DRFNNM-based and RFNNM-based ANC systems are shown as thin and thick lines,
respectively. The MSE of the RFNNM control system is approximately 4 dB below that of the DRFNNM
control system.

Fig. 7 shows the results of the simulation of the canceling errors between the 3000th and 5000th iterations in
the frequency domain. Similarly, the results for the DRFNNM and RFNNM are shown by the thin and thick
lines, respectively. The dashed line shows the sound pressure level of the disturbance signal when the ANC
system is turned off. There is a 200Hz peak in the noise spectrum, which is produced by the nonlinear square
term in the primary acoustic path. The DRFNNM-based ANC system can reduce the 200Hz noise by 8 dB,
but it cannot reduce the 100Hz noise. The RFNNM-based ANC system can reduce the 200Hz noise by 18 dB
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and can also reduce the 100Hz noise by 12 dB. However, the broadband noise level of other frequencies has
been increased.

Case 2: Simulations are presented for the RFNNs whose firing strength is calculated by ‘‘summation.’’ Both
diagonal recurrent and fully recurrent NNs are selected as single-input and single-output networks. The
acoustic model is similar to that of Case 1, and the variance of the Gaussian white noise signal is set to 0.04.

Fig. 8 shows the MSE at the error microphone versus the number of iterations. The results of the DRFNNA-
based and RFNNA-based ANC systems are shown as the solid thin line and the thick line, respectively. The
MSE of the RFNNA control system is approximately 20dB below that of the DRFNNM control system. A
static fuzzy NN (SFNN)-based ANC system has also been tested [11]. For comparison, two input nodes, which
are obtained by delaying the outputs of Layer 2 in the SFNN, are used in the simulation such that the number of
parameters in the SFNN is close to the number of parameters in the RFNNA. The results are shown as the
dashed line. Its performance is similar to the performance of the RFNNA control system, but the SFNN-based
ANC system takes more CPU times than does the RFNNA-based ANC system (for example, a Matlab
simulation took 13.9400 s for the RFNNA system and 20.3590 s for the SFNN system).

Fig. 9 shows simulation results of the canceling errors between the 3000th and 5000th iterations in the
frequency domain. The result for the DRFNNA system is shown as the solid thin line, the result of the
RFNNA system is shown as the solid thick line, and the dashed line shows the sound pressure level of the
disturbance signal when the ANC system is turned off. The DRFNNA-based ANC system can reduce the
200Hz noise by 8 dB, but it increases the 100Hz noise by 10 dB. The RFNNA-based ANC system can reduce
the 200Hz noise by 18 dB and can also reduce the 100Hz noise by 20 dB. The broadband noise level of other
frequencies has not been increased.

Case 3: A more realistic acoustic model is selected as in Ref. [16]. There is a five-sample delay in the
secondary path, and has a root outside the unit circle. The secondary path simulated is a nonminimum phase
system.

The primary acoustic path is selected as

dðkÞ ¼ 0:8xðk � 9Þ þ 0:6xðk � 10Þ � 0:2xðk � 11Þ � 0:5xðk � 12Þ � 0:1xðk � 13Þ

þ 0:4xðk � 14Þ � 0:05xðk � 15Þ þ 0:8x2ðk � 9Þ.
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The secondary acoustic path from the secondary source to the error microphone is

yðkÞ ¼ uðk � 5Þ þ 2:5uðk � 6Þ þ 1:76uðk � 7Þ þ 0:15uðk � 8Þ

� 0:4825uðk � 9Þ � 0:18625uðk � 10Þ � 0:005uðk � 11Þ

� 0:001875uðk � 12Þ.

Simulations are carried out for the RFNNs, whose firing strengths are calculated by ‘‘summation’’. The
variance of the Gaussian white noise signal is set as 1.
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Fig. 10 gives the simulation results of the canceling errors between the 3000th and 5000th iterations in the
frequency domain. Similarly, the results of the RFNNA are shown as the solid line. The dashed line shows the
sound pressure level of the disturbance signal when the ANC system is turned off. There is a 200Hz peak in
the noise spectrum, which is produced by the nonlinear square term in the primary acoustic path. The
RFNNA-based ANC system can reduce the 100Hz noise by 12 dB and reduce the 200Hz noise by 5 dB. The
broadband noise between 100 and 200Hz is reduced by about 5 dB.

From the simulation results, one can find that the convergence of the RFNNA control is superior to that of
the other recurrent NN control.

Using the original DRFNN, we will give a brief analysis to explain why the RFNN with the ‘‘summation’’
operation is better than the RFNN with the ‘‘product’’ operation. The output in Layer 3 with the ‘‘product’’
operation (Eq. (9)) is as follows:

a
ð3Þ
i ðkÞ ¼ SðkÞVia

ð3Þ
i ðk � 1Þ ¼ SðkÞSðk � 1Þ . . .Sð0ÞVk

i . (30)

The output in Layer 3 with the ‘‘summation’’ operation is

a
ð3Þ
i ðkÞ ¼ SðkÞ þ V ia

ð3Þ
i ðk � 1Þ ¼ SðkÞ þ ViSðk � 1Þ þ � � � þ V k

i Sð0Þ. (31)

According to Theorem 2 the recurrent weights satisfy jV io1. If k is a large number, the output in Eq. (30)
will tend to zero. But Eq. (31) gives a better memory structure; the weight for the past output decreases with
memory lengths.

7. Conclusions

Nonlinear ANC was studied. In particular, some RFNNs were proposed for solving the nonlinear effect in
the primary acoustic path of an ANC system. Using RFNNs, only one input is required, and fewer parameters
are used. The convergence rate of an RFNN is faster than that of an SFNN of the same size. An online back-
propagation learning algorithm based on the error gradient descent method is proposed, and the local
convergence of the closed-loop system is proven using the discrete Lyapunov function. Some simulation
results were given to compare different RFNN-based methods. The results showed that the adaptive ANC
method based on an RFNN with ‘‘summation’’ (addition) inference (RFNNA) is very effective in nonlinear
noise control, and the convergence of the RFNNA control is superior to that of the other fuzzy NN controls.
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This is because of the fact that a diagonal recurrent NN only has self-feedback links and, therefore, cannot
approximate a complex dynamic system. The direct self-feedback link in Layer 3 results in all outputs of this
layer being zeros, and the improvements proposed in this paper were necessary to overcome this drawback.
The simulations assumed that the secondary path, H(z), is estimated off-line prior to the operation of the
ANC system. Online modeling of the secondary path can also be carried out as described in Refs. [2,16]. The
proposed algorithms can also be applied to the problem of nonlinear secondary paths as described in
Refs. [6–8]. Our current work is focused on designing an ANC system based on RFNNs to meet the
requirements of practical applications.
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